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Abstract

An energy-based joint motion and disparity estimation algorithm with an anisotropic diffusion operator is proposed to

yield correct and dense displacement vectors. We propose two energy models; the joint estimation model and the

simultaneous joint estimation model. In the joint estimation model, we compute the initial disparity in the current frame

with the joint estimation constraint, using the left and right motions and the disparity in the previous frame; therefore, the

model is prevented from being trapped in the local minima. Then, we regularize this disparity by using our proposed energy

model. In the simultaneous joint estimation model, we propose an energy functional that consists of fidelity and smoothing

terms for the left and right motions and the joint data terms. We estimate the left and right motions simultaneously in

order to increase correctness. We use the Euler–Lagrange equation with variational methods and solve the equation with

the finite difference method (FDM) to minimize the energy model. Experimental results show that the proposed algorithm

provides accurate motion-disparity maps that reflect the constraints of motion and disparity, and preserve the

discontinuities of the object boundaries well.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

There has been considerable interest in recovering 3D motion flow in image sequences. Most research has
involved 3D voxel data sets [1,2] or image sequences from a monocular camera [3,4]. The voxel data sets are
used in specific fields such as medical imaging. Estimating 3D motions from a monocular sequence is limited
only when the objects show rigid motions and only contain simple depth information. 3D motion
interpretation from stereo image sequences has recently been studied and used to achieve better results and
applications [5]. However, most of these algorithms compute motion and depth information separately and do
not consider the constraints between motion and disparity in the stereoscopic image sequences.

One of the most pressing problems in 3D motion estimation is to locate corresponding points in the images.
Estimating motion and disparity involves finding the corresponding points between two stereoscopic or
e front matter r 2005 Elsevier B.V. All rights reserved.
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temporally sequential images. The resulting motion and disparity can be converted into a 3D motion flow
system which consists of x, y and z motion parameters. A number of studies have been reported on the
correspondence problem [6,16,17]: some of these studies have used feature-based approaches, energy-based
approaches, dynamic programming-based approaches, and area-based approaches. In this paper, we use
energy-based estimation, which yields accurate and dense displacement vector fields and shows good flexibility
for several constraints [6–9].

The disparity or motion displacement vectors vary smoothly inside an object and change abruptly on the
object boundaries. This phenomenon leads to the smoothness constraint. Because the surface of an object is
usually continuous, the neighborhood values of the disparity or motion vectors in the objects generally
correlate with each other. On the other hand, the value of the displacement vector changes radically on the
boundary of an object. In order to produce smooth disparity fields while preserving the discontinuities
resulting from the boundaries, we propose the energy model to regularize the fields. Much research has
been performed in the field of edge-preserving regularization. For example, the regularization method used by
Horn and Schunck introduces the edge-preserving smoothing term to compute the optical flow [10]. In
addition, Nagel and Enkelmann modified the regularization model to improve edge-preserving smoothing
performance [11].

In this paper, we propose an energy model that is useful for correspondence estimation in stereo image
sequences. The model also presents an efficient way to solve the energy minimization problem—by discretizing
the partial differential equation (PDE) with the finite difference method (FDM). Finally, the correct
displacement vector can be found in a recursive manner by updating the vectors. However, the variational
methods are sensitive to the initial data, therefore the proper initial data should be used to prevent the solution
from being trapped in the local minima. The estimation of motion and disparity in stereoscopic image
sequences requires high computational complexity, especially when the energy-based approach is used to
acquire dense and accurate solutions. To overcome this problem and improve estimation performance, we
estimate motion and disparity jointly using joint estimation constraints, which express the relation of four
displacement vectors (two motion vectors and two disparity vectors) as a linear combination [12]. Using this
relation, the disparity in the current frame is computed from the other three vectors, and it is used as the initial
disparity in the frame. This leads to a reduction of complexity and there is also less probability of getting
trapped in the local minima. Moreover, by including the relation in the energy model, we define a new energy
functional, called by ‘joint data term’. By adding the term, we propose the simultaneous joint energy model
which can estimate left and right motions simultaneously. In the energy model, we can acquire more correct
displacement vectors and reduce the number of displacement vectors to be found.

The layout of this paper is as follows. Sections 2 and 3 explain joint estimation with regularization and
simultaneous joint estimation with regularization, respectively. We describe the estimation models and energy-
based estimation algorithms in each section. Finally, we present our experimental results and confirm the
performance of the energy model in Section 4, and summarize the algorithm and provide suggestions for
future work in Section 5.

2. Joint estimation with regularization

2.1. Joint estimation model

Joint estimation is an efficient and accurate way to estimate motion and disparity in stereo image sequences.
A coherence condition between motion and disparity in stereo sequences may be expressed as a linear
combination of four vectors (two motion vectors and two disparity vectors) in two successive frame pairs, as
shown in Fig. 1. For a sampling position ðptx1; pty1Þ at the previous frame, the relationship is as follows
[12,13]:

d1ð ptx1; pty1Þ þ ur1ð ptx1
�� þ d1ð ptx1; pty1Þ; pty1Þ�d2ðx; yÞ � ul1ð ptx1; pty1Þ

��oe; (1)

where e is the error. This should be zero ideally when joint estimation is accurate. When e ¼ 0, this relationship
between the existing motion and disparity vectors can be used to calculate the disparity vector in the current
frame with the left and right motion vectors and the disparity vector in the previous frame, as shown in Eq. (2)
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Fig. 1. Joint estimation model.
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[12,13]. This method may seriously yield an accumulation of errors, which result from perturbations in the
vectors. For this reason, the method is used only for finding the initial disparity vectors.

d2ðx; yÞ ¼ �ul1ð ptx1; pty1Þ þ d1ð ptx1; pty1Þ þ ur1ð ptx1þ d1ð ptx1; pty1Þ; pty1Þ. (2)
2.2. Energy-based motion and disparity estimation

General motion and disparity fields should be smooth in the object area while preserving discontinuities at
the object’s boundaries in the frame. In order to preserve discontinuities and overcome a classic ill-posed
problem, we add the regularization term proposed by Nagel–Enkelmann [7,8,11]. We can estimate the motion
and disparity fields by minimizing the energy model, which consists of fidelity and regularization terms:

EMðu; vÞ ¼

Z
O
ðI l1ðx; yÞ � I l2ðxþ u; yþ vÞÞ2 dxdyþ l

Z
O
traceððrhÞTDðrI l1ÞðrhÞÞdxdy,

EDðdÞ ¼

Z
O
ðI l1ðx; yÞ � I r1ðxþ d; yÞÞ2 dxdyþ l

Z
O
ðrdÞTDðrI l1ÞðrdÞdxdy; ð3Þ

where hðx; yÞ ¼ ðuðx; yÞ; vðx; yÞÞ.
EM;ED refer to the energy functional of motion and disparity, respectively. O is an image plane, l is a

weighting factor. DðrI l1Þ, shown in Eq. (4) and proposed by Nagel and Enkelmann, is an anisotropic linear
operator, which is a regularized projection matrix in the perpendicular aspect of rI l1. To analyze the diffusion
operator DðrI l1Þ, we refer to [7,8]. s is the anisotropic diffusion constant and represents the rate of anisotropic
diffusion. An energy model that uses the diffusion operator inhibits blurring of the fields across the boundaries
of I1 where jrI l1jbs:

DðrI l1Þ ¼
1

jrI l1j
2 þ 2s2

qI l1
qy

�
qI l1
qx

0
@

1
A qI l1

qy

�
qIl1
qx

0
@

1
A

T

þ s2I

2
4

3
5. (4)

The model reveals a diffusion tensor that resembles the one used for anisotropic diffusion filtering. DðrI l1Þ

shows the eigenvectors v1 ¼ rI l1; v2 ¼ rI?l1 and the corresponding eigenvalues are

s1 ¼
s2

jrI l1j
2 þ 2s2

,

s2 ¼
jrI l1j

2 þ s2

jrI l1j
2 þ 2s2

. ð5Þ

In objects where jrI l1j approaches 0, both s1 and s2 approach 1/2, while on the boundaries where jrI l1j

approaches N, s1 and s2 approach 0 and 1, respectively. In other words, the model shows isotropic behavior
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in objects, but on the boundaries the model smoothes dependently to not only the magnitude but also the
direction of the edge. This means that it performs anisotropic behavior along the edges, as shown in Fig. 2.
Therefore, the determination of s is very important. The selection of s depends strongly on the characteristic
of an image. Alvarez et al. proposed the formulation of s as follows:

s ¼

Z s

0

H jrI l1j
ðzÞdz, (6)

where H jrI l1j
ðzÞ represents the normalized histogram of jrI l1j and s is the isotropy fraction. When s

approaches 0, the diffusion operator becomes anisotropic at all locations, and when s approaches 1, it leads to
isotropic diffusion everywhere. With the normalization of s, the energy model has the characteristic that is
invariant to the gray level transform.

The minimization of Eq. (3) yields the following associated Euler–Lagrange equation with Neumann
boundary conditions:

ldivðDðrI l1ðx; yÞÞrulðx; yÞÞ þ ðI l1ðx; yÞ � I l2ðxþ ul ; yþ vlÞÞ
qI l2ðxþ ul ; yþ vlÞ

qx
¼ 0,

ldivðDðrI l1ðx; yÞÞrvlðx; yÞÞ þ ðI l1ðx; yÞ � I l2ðxþ ul ; yþ vlÞÞ
qI l2ðxþ ul ; yþ vlÞ

qy
¼ 0,

ldivðDðrI l1ðx; yÞÞrdðx; yÞÞ þ ðI1ðx; yÞ � I2ðxþ d; yÞÞ
qI2ðxþ d; yÞ

qx
¼ 0. ð7Þ

We obtain solutions to the Euler–Lagrange equation by calculating the asymptotic state (t!1) of the
parabolic system:

qu

qt
¼ ldivðDðrI l1ðx; yÞÞrulðx; yÞÞ þ ðI l1ðx; yÞ � I l2ðxþ ul ; yþ vlÞÞ

qI l2ðxþ ul ; yþ vlÞ

qx
,

qv

qt
¼ ldivðDðrI l1ðx; yÞÞrvlðx; yÞÞ þ ðI l1ðx; yÞ � I l2ðxþ ul ; yþ vlÞÞ

qI l2ðxþ ul ; yþ vlÞ

qy
,

qd

qt
¼ ldivðDðrI l1ðx; yÞÞrdðx; yÞÞ þ ðI l1ðx; yÞ � Ir1ðxþ d; yÞÞ

qI2ðxþ d; yÞ

qx
. ð8Þ

This PDE corresponds to the nonlinear diffusion equation with an additional reaction term [14].
DðrI l1ðx; yÞÞ is a diffusivity function, which plays a role in preserving discontinuities. This function reduces
smoothing on the object boundaries to preserve their discontinuities. This model works better than isotropic
diffusion, because anisotropic diffusion considers the direction as well as the magnitude of the edge.

In general, the local minimum problem is one of the most serious problems when using energy-based
methods because of the nonconvexity of the functional. We cannot expect unique solutions to Eq. (8), since
there can be multiple local minima. Therefore, in order to minimize the local minimum problem, initial field
estimation should be performed before the proposed estimation is applied. We use hierarchical block-based
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motion estimation for the initial motion field, and a region-dividing technique for the initial disparity field in
the previous frame [15]. The computed motion and disparity is used as the initial solution to Eq. (7). As shown
in Fig. 3, if the initial data is adjacent to the true solution, it is less probable that the equation is trapped in the
local minimum. For the initial disparity field in the current frame, we simply use Eq. (2), which is also refined
by the proposed energy model.
2.3. Numerical scheme

We discretize Eq. (8) to find a solution with the FDM. All spatial and temporal derivatives are
approximated by forward differences and the semi-implicit scheme. The computationally more expensive
solution of nonlinear systems is avoided by using the first-order Taylor expansion in an implicit discretization,
as shown in

I l2ði þ ukþ1
i; j ; j þ vkþ1

i; j Þ ¼ I l2ði þ uk
i; j ; j þ vk

i; jÞ þ ðu
kþ1
i; j � uk

i; jÞI l2;xði þ uk
i; j ; j þ vk

i; jÞ

þ ðvkþ1
i; j � vk

i; jÞI l2;yði þ uk
i; j ; j þ vk

i; jÞ,

I l2ði þ dkþ1
i; j ; jÞ ¼ I l2ði þ dk

i; j ; jÞ þ ðd
kþ1
i; j � dk

i; jÞI l2;xði þ dk
i; j ; jÞ. (9)

Let

DðrI1Þ ¼
a b

b c

� �
, (10)

then r � DðrIÞruð Þ can be expressed in the discrete form as follows:

r � ðDi; jðrIÞrui; jÞ ¼
q
qx

ai; j

uk
i; jþ1 � uk

i; j

h1

 !
þ bi; j

uk
iþ1; j � uk

i; j

h2

 ! !

þ
q
qy

bi; j

uk
i; jþ1 � uk

i; j

h1

 !
þ ci; j

uk
iþ1; j � uk

i; j

h2

 ! !
. ð11Þ

In Eq. (11), h1 and h2 are the pixel sizes in the x and y directions, respectively.
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As a result, Eq. (8) is discretized as follows:

ukþ1
i; j � uk

i; j

t
¼ lr � ðDi; jðrI l1Þrui; jÞ þ I l1ði; jÞ � I l2ði þ uk

i; j ; j þ vk
i; jÞ

� �n
� ðukþ1

i; j � uk
i; jÞI l2;xði þ uk

i; j ; j þ vk
i; jÞ

�ðvkþ1
i; j � vk

i; jÞI l2;yði þ uk
i; j ; j þ vk

i; jÞ

o
I l2;xði þ uk

i; j ; j þ vk
i; jÞ,

vkþ1
i; j � vk

i; j

t
¼ lr � ðDi; jðrI l1Þrvi; jÞ þ I l1ði; jÞ � I l2ði þ uk

i; j ; j þ vk
i; jÞ

� �n
� ðukþ1

i; j � uk
i; jÞI l2;xði þ uk

i; j ; j þ vk
i; jÞ

�ðvkþ1
i; j � vk

i; jÞI l2;yði þ uk
i; j ; j þ vk

i; jÞ

o
I l2;yði þ uk

i; j ; j þ vk
i; jÞ,

dkþ1
i; j � dk

i; j

t
¼ lr � r � Di; jðrI l1Þrdi; j

� �
þ I l1ði; jÞ � Ir1ði þ dk

i; j ; jÞ
� �n

�ðdkþ1
i; j � dk

i; jÞIr1;xði þ dk
i; j ; jÞ

o
�I r1;xði þ dk

i; j ; jÞ, ð12Þ

where t is the time step size.
3. Simultaneous joint estimation with regularization

3.1. Model for simultaneous joint estimation

In Section 3, the joint model uses the relationship between the motion and disparity vectors to compute the
initial disparity vector in the current frame. In this section, by applying the joint constraint to the energy
model, we can acquire more correct displacement vectors and reduce the number of displacement vectors to be
found. The model for simultaneous joint estimation is shown in Fig. 4. The starting point ðx; yÞ for joint
estimation exists in the left image in the previous frame, because the simultaneous joint model estimates the
motion of the left and right sequences simultaneously.
3.2. Energy-based motion and disparity estimation

To apply the constraints to the motion and disparity in the energy model, we define the new data term
EJ ðu; vÞ as follows:

EJðu; vÞ ¼

Z
O
ðI l2ðxþ ul ; yþ vlÞ � Ir2ðxþ d1 þ ur; yþ vrÞÞ

2 dxdy. (13)

The energy functional is the cost between the point ðxþ ul ; yþ vlÞ estimated by the left motion from the
ðx; yÞ and the point ðxþ d1 þ ur; yþ vrÞ estimated by the right motion from the ðxþ d1; yÞ. The more correct
the joint estimation, the smaller the energy functional EJðu; vÞ. By adding the joint term, the energy model for
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the motion field can be defined as follows:

ESMðul ; vl ; ur; vrÞ ¼

Z
O
ðI l1ðx; yÞ � I l2ðxþ ul ; yþ vlÞÞ

2
þ ðIr1ðxþ d1; yÞ � Ir2ðxþ d1 þ ur; yþ vrÞÞ

2

þ ðI l2ðxþ ul ; yþ vlÞ � I r2ðxþ d1 þ ur; yþ vrÞÞ
2 dxdy

þ l1

Z
O
traceðrhlÞ

TDðrI l1ÞðrhlÞdxdy

þ l2

Z
O
traceðrhrðxþ d1; yÞÞ

TDðrIr1Þðrhrðxþ d1; yÞÞdxdy, ð14Þ

where hðx; yÞ ¼ ðuðx; yÞ; vðx; yÞÞ.
ESM refers to the energy functional of left and right motions in the simultaneous joint estimation model.

The functional also consists of the data term and the smoothing term. The data term refers to the data term
for the left and right motions, and the data term EJðu; vÞ for the joint estimation constraint. The smoothing
term refers to the smoothing term for the left and right motions. The smoothing term is the same as that in
Section 3, apart from the fact that the smoothing term for the right motion is ðxþ d1; yÞ. This is because
the four corresponding points starting from ðx; yÞ are the same points in the 3D space. Simultaneous
joint estimation should be executed using the corresponding points. By adding the EJðu; vÞ, the error gene-
rated by joint estimation is reduced, and we can acquire a more correct solution. Since the estimation
uses a disparity vector in the previous frame d1ðx; yÞ, the disparity vector must be estimated correctly
at first.

In the model, since the joint estimation constraint is considered, the value of the vertical disparity in the
current frame is reduced. Therefore, we can obtain the y-motion in the right sequence as follows:

dy2ðxþ ul ; yþ vlÞ ¼ vrðxþ d1; yÞ � vlðx; yÞ ffi 0, (15)

vrðxþ d1; yÞ ¼ vlðx; yÞ. (16)

The minimization of Eq. (14) yields the following associated Euler–Lagrange equation with Neumann
boundary conditions:

ldiv DðrI l1ðx; yÞÞrulðx; yÞð Þ þ ðI l1ðx; yÞ � 2I l2ðxþ ul ; yþ vlÞ þ Ir2ðxþ d1 þ ur; yþ vrÞÞ
qI l2ðxþ ul ; yþ vlÞ

qx
¼ 0,

ldiv DðrI l1ðx; yÞÞrvlðx; yÞð Þ þ ðI l1ðx; yÞ � 2I l2ðxþ ul ; yþ vlÞ þ Ir2ðxþ d1 þ ur; yþ vrÞÞ
qI l2ðxþ ul ; yþ vlÞ

qy
¼ 0,

ldiv DðrI l1ðxþ d1; yÞÞrurðxþ d1; yÞð Þ þ ðIr1ðxþ d1; yÞ � 2I r2ðxþ d1 þ ur; yþ vrÞ

þ I l2ðxþ ul ; yþ vlÞÞ
qIr2ðxþ d1 þ ur; yþ vrÞ

qx
¼ 0. ð17Þ

We obtain the solutions to the Euler–Lagrange equations by calculating the asymptotic state (t!1) of the
parabolic system.

qul

qt
¼ ldiv DðrI l1ðx; yÞÞrulðx; yÞð Þ þ ðI l1ðx; yÞ � 2I l2ðxþ ul ; yþ vlÞ

þ Ir2ðxþ d1 þ ur; yþ vrÞÞ
qI l2ðxþ ul ; yþ vlÞ

qx
,

qvl

qt
¼ ldiv DðrI l1ðx; yÞÞrvlðx; yÞð Þ þ ðI l1ðx; yÞ � 2I l2ðxþ ul ; yþ vlÞ

þ Ir2ðxþ d1 þ ur; yþ vrÞÞ
qI l2ðxþ ul ; yþ vlÞ

qy
,
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qurðxþ d1; yÞ

qt
¼ ldiv DðrI l1ðxþ d1; yÞÞrurðxþ d1; yÞð Þ þ ðIr1ðxþ d1; yÞ � 2Ir2ðxþ d1 þ ur; yþ vrÞ

þ I l2ðxþ ul ; yþ vlÞÞ
qIr2ðxþ d1 þ ur; yþ vrÞ

qx
. ð18Þ

The simultaneous joint estimation is performed as follows:
1.
 Compute the initial motion and disparity vectors of the previous frame using hierarchical block-based
motion estimation and a region-dividing disparity estimation.
2.
 Estimate the disparity vector of the previous frame d1ðx; yÞ using the initial disparity vector computed in
step 1.
3.
 Estimate the left and right motion vectors using the initial motion vector computed in step 1 and the
regularized disparity vector computed in step 2.
4.
 Compute the backward motion vector of the left frame.

5.
 Compute the initial disparity vector of the current frame.

6.
 Estimate the disparity of current frame using initial disparity computed in step 5.

3.3. Numerical scheme

We also discretize Eq. (18) using a FDM. The first-order Taylor expansion used in an implicit discretization
is shown as

I l2ði þ ukþ1
l;i; j ; j þ vkþ1

l;i; j Þ ¼ I l2ði þ uk
l;i; j ; j þ vk

l;i; jÞ þ ðu
kþ1
l;i; j � uk

l;i; jÞI l2;xði þ uk
l;i; j ; j þ vk

l;i; jÞ

þ ðvkþ1
l;i; j � vk

l;i; jÞI l2;yði þ uk
l;i; j ; j þ vk

l;i; jÞ,

Ir2ði þ d1;i; j þ ukþ1
r;iþd1;i; j ; j

; j þ vkþ1
r;iþd1;i; j ; j

Þ ¼ I r2ði þ d1;i; j þ uk
r;iþd1;i; j ; j

; j þ vk
r;iþd1;i; j ; j

Þ þ ðukþ1
r;iþd1;i;j ; j

� uk
r;iþd1;i; j ; j

ÞIr2;xði þ d1;i; j þ uk
r;iþd1;i; j ; j

; j

þ vk
r;iþd1;i; j ; j

Þ þ ðvkþ1
r;iþd1;i; j ; j

� vk
r;iþd1;i; j ; j

ÞIr2;yði þ d1;i; j þ uk
r;iþd1;i; j ; j

; j þ vk
r;iþd1;i; j ; j

Þ.

ð19Þ

The final solution can be found in a recursive manner by using the following equation:

ukþ1
l;i; j � uk

l;i; j

t
¼ lr � Di; jðrI l1Þrul;i; j

� �
þ fI l1ði; jÞ � 2I l2ði þ ukþ1

l;i; j ; j þ vkþ1
l;i; j Þ

þ Ir2ði þ d1;i; j þ ukþ1
r;iþd1;i; j ; j

; j þ vkþ1
r;iþd1;i; j ; j

ÞgI l2;xði þ uk
l;i; j ; j þ vk

l;i; jÞ,

vkþ1
l:i; j � vk

l;i; j

t
¼ lr � Di; jðrI l1Þrvl;i; j

� �
þ fI l1ði; jÞ � 2I l2ði þ ukþ1

l;i; j ; j þ vkþ1
l;i; j Þ

þ Ir2ði þ d1;i; j þ ukþ1
r;iþd1;i; j ; j

; j þ vkþ1
r;iþd1;i; j ; j

ÞgI l2;yði þ uk
l;i; j ; j þ vk

l;i; jÞ,

ukþ1
r;iþd1;i; j ; j

� uk
r;iþd1;i; j ; j

t
¼ lr � ðDi; jðrIr1Þrur;iþd1;i; j ; jÞ þ fI r1ði þ d1;i; j ; jÞ þ I l2ði þ ukþ1

l;i; j ; j þ vkþ1
l;i; j Þ

�2Ir2ði þ d1;i; j þ ukþ1
r;iþd1;i; j ; j

; j þ vkþ1
r;iþd1;i; j ; j

ÞgIr2;xði þ d1;i; j þ uk
r;iþd1;i; j ; j

; j þ vk
r;iþd1;i; j ; j

Þ.

ð20Þ

4. Experimental results

The experiment was performed on the stereoscopic sequences, which is ‘‘Boy’’ of size 320� 240 and ‘‘Man’’
of size 256� 256 and ‘‘Aqua’’ of size 320� 256 in Fig. 5. The stereoscopic sequences ‘‘Boy’’ were captured
with a DigiclopsTM of Point Gray Research Inc., which provides rectified stereo sequences from parallel stereo
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Table 1

Parameters used in joint estimation

Parameter Values

Weighting factor (disparity) l ¼ 2000

Weighting factor (motion)

Joint model l ¼ 6000

Simultaneous model l1, l2 ¼ 10,000

Gradient step size dI ¼ 3/dd ¼ 1

Time step size t ¼ 0.0001

Isotropy fraction s ¼ 0.3

Number of iteration T ¼ 600

Fig. 5. Test image sequences in previous frames: (a) ‘‘Boy’’ images; (b) ‘‘Man’’ images; (c) ‘‘Aqua’’ images.
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Fig. 6. Distribution function of s according to isotropy fraction s in ‘‘Boy’’ images.
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Fig. 7. Disparity map in previous frame of ‘‘Boy’’ images according to s: (a) when s ¼ 0.1; (b) when s ¼ 0.7.

Fig. 8. Comparison with disparity map using isotropic and anisotropic operator of ‘‘Boy’’ images: (a) Geman & McClure’s isotropic

operator; (b) anisotropic operator.
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cameras. The focal length of the DigiclopsTM is 6mm, and the baseline distance between the two lenses is
10 cm. In order to visualize motion and disparity vectors, we used gray level images which consist of values
between 0 and 255 for disparity maps and are defined by 128þ 8u and 128þ 8v for x and y motion maps,
respectively.

The parameters used in the experiment for motion and disparity estimations are shown in Table 1. Most of
these parameters were selected empirically and intuitively. The values of the weighting factor l were defined
differently to the motion and disparity estimations in each model. l was 2000 in the disparity model, 6000 in
the motion model, and 10,000 in the simultaneous motion model. We analyzed the influence of the weighting
factor in the motion and disparity vectors. The step size t was 0.0001, because larger values sometimes cause
divergent solutions to the equations. In the case of the gradient step size, we applied different sizes to the
gradient of an image and that of the fields, because the values of the fields are more sensitive to the results than
those of the images. The isotropy fraction was 0.3, which means that the energy model showed anisotropic
diffusion.

To evaluate the performance of the model with the anisotropic diffusion operator, we compared the results
to those found when using the isotropic diffusion operator. The diffusivity function, proposed by Geman &
McClure, was used as the isotropic diffusion operator [14,18].

4.1. Performance analysis of the anisotropic diffusion operator

Fig. 6 shows how s changes for the value of s in Eq. (6). The s is the anisotropic diffusion constant, and s is
the isotropy fraction. In regions where jrI j � s, the model restrains the blurring of the fields across the
boundaries of I . The amount of the blurring is determined based on s, which shows a value between 0 and 1. In
the experiment, we defined s as 0.3. This means that the regularization term diffuses isotropically at 30% of all
image locations. If s is too small or too large, the displacement vector can either be under-smoothed or
over-smoothed, as shown in Fig. 7. When s ¼ 0.1, the discontinuities are preserved but the disparity field
is not smooth enough. When s ¼ 0.7, the disparity field is over-smoothed and the discontinuities are not
preserved well.
Fig. 9. Comparison with x and y motion map using isotropic and anisotropic operator of ‘‘Boy’’ images (only left sequences): (a) Geman

& McClure’s isotropic operator; (b) anisotropic operator.
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Fig. 10. Energy of regularization term of disparity and motion varying with l in ‘‘Boy’’ images: (a) energy of regularization term of

disparity; (b) energy of regularization term of motion.
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Fig. 8 shows the disparity field in the previous frame, estimated with energy models that used isotropic and
anisotropic operators. We found that the energy model that used an anisotropic operator showed more
accurate performance in the estimated disparity fields and discontinuity localizations. These characteristics
can be seen in the disparity field of the back of the man, and in the table and chair in the right part. Fig. 9
shows the x and y motions of the model when using isotropic and anisotropic operators. Compared with that
of the isotropic diffusion model, the motion around the cap shows a more distinct difference.

Fig. 10(a) shows the energy of the regularization term of the disparity field according to l. In order to see
the difference of the convergence rate according to the l, we draw behaviors of energy as a graph on the
logarithmic scale. Since the difference in the data term is insignificant to the l, we only show the graph of the
regularization term. As l increases, the convergence rate also increases, and it shows a maximum value when
l ¼ 2000. However, when l is 3000, the regularization term diverges and this causes the solution to become
trapped in the local minima. For small or large l, the convergence rate is reduced because the model
overemphasizes the data term or the regularization term. Fig. 10(b) shows the energy of the regularization
term for motion according to l. This graph is also drawn on the logarithmic scale. As l increases, the
convergence rate also increases. The energy of regularization term in the motion model is smaller than that in
the disparity model because the magnitude of motion is relatively small. A large l causes the motion to
become over-smoothed because the model overemphasizes the regularization term. For this reason, we define
l as 6000.
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4.2. Joint estimation with regularization

Given the disparity in the previous frame and the motion vectors in the left and right sequences, the initial
disparity in the current frame is computed using the relation of the motion and disparity vectors in the stereo
sequences. Fig. 11 shows the initial disparity and the regularized disparity vectors in ‘‘Boy’’ images. The
regularized disparity vectors are similar to those of the original estimation, which used disparity vectors
(computed by the region-dividing technique) as the initial data. Moreover, because the initial disparity vector
was computed using accurate disparity and motion vectors, the initial disparity vector acquired by joint
estimation is better than that of the original estimation. In Fig. 11(d), an error in the initial state is smaller
than that obtained with the original estimation, and this leads to the conclusion that the model converges
faster to the minimum point.

Fig. 12 shows the motion and disparity of ‘‘Man’’ images. Actually, the ‘‘Man’’ images were captured by a
toed-in camera system so that their epipolar lines are not exactly parallel, but we applied the same horizontal
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Fig. 12. Disparity and motion (for left sequence only) map in ‘‘Man’’ images: (a) disparity of previous frame; (b) x and y motion of left

sequence; (c) initial and regularized disparity of current frame.
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scanline search for simplicity because the images are small and the main object is placed at the center of the
image where epipolar line distortion is not serious. Since the background region is completely textureless, this
leads to the conclusion that the energy model is trapped in the local minima. This influences the initial
disparity vector in the current frame, but the regularized disparity is also estimated in the region sporadically.
However, though ‘‘Man’’ images have very large disparity, maximum value of which is 64 pixels, the model
yields a correct disparity map and preserves the discontinuities. Moreover, though the motion of the man is
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Fig. 13. Disparity and motion (for left sequence only) map in ‘‘Aqua’’ images: (a) disparity of previous frame; (b) x and y motion of left

sequence; (c) initial and regularized disparity of current frame.

D.B. Min et al. / Signal Processing: Image Communication 21 (2006) 252–271266
large, the model yields a correct motion map and the initial wrong disparity vector produced by the occlusion
of motion is eliminated in the regularization process.

Fig. 13 shows the motion and disparity of ‘‘Aqua’’ images. The visualization method was same as Fig. 12,
and vector plot of motion map was added. In these sequences, there is a global camera panning and small fish
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Fig. 14. x and y motion of simultaneous model in ‘‘Boy’’ images: (a) x and y motion of left sequence in simultaneous model; (b) x and y

motion of right sequence in simultaneous model.

Fig. 15. x and y motion of simultaneous model in ‘‘Man’’ images: (a) x and y motion of left sequence in simultaneous model; (b) x and y

motion of right sequence in simultaneous model.
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Fig. 16. x and y motion of simultaneous model in ‘‘Aqua’’ images: (a) x and y motion of left sequence in simultaneous model; (b) x and y

motion of right sequence in simultaneous model.

D.B. Min et al. / Signal Processing: Image Communication 21 (2006) 252–271268
motion. The vector plot of motion map shows that both background and object move in x-axis direction. In
disparity map, we found that the energy model showed accurate performance in the estimated disparity fields
and discontinuity localizations. These characteristics can be seen in the discontinuities of the disparity field
between rock and fishes. Moreover, the initial wrong disparity vector produced by joint estimation process
was eliminated in the regularization process, for example, at the bottom of the image.

4.3. Simultaneous joint estimation with regularization

In this model, motions in the left and right sequences are simultaneously estimated. By adding the joint
term to the energy model, errors generated from joint estimation are reduced, so we are able to compute
the y-motion in the right sequence from that in the left sequence directly. Since this model uses the disparity
vector in the previous frame, the disparity vector should be correctly estimated at first. After the motion
vectors are simultaneously estimated, the remaining process is the same as when using only the joint model
(see Section 3).

Figs. 14–16 show the left and right motions in ‘‘Boy’’, ‘‘Man’’ and ‘‘Aqua’’ images, respectively. The y-
motion in the right sequence is similar to that in the joint model, and this means that the y-motion in the right
sequence can be computed using that in the left sequence. We can see that the simultaneous model also
estimates smooth and edge-preserving displacement vectors.

Fig. 17(a) shows the energy of the regularization term of the simultaneous model according to l. As l
increases, the convergence rate also increases. Large l causes the motion to become over-smoothed because
the model overemphasizes the regularization term, thus we define l as 10,000. As repeating this iteration
scheme, the energy of the data term increases because of the smoothing effect of the regularization term in
Fig. 17(b). The smoothing effect reduces the similarity between the corresponding points, so this leads to an
increase of the energy of the data term. However, the overall energy decreases for the reduction of energy of
the regularization term. In the simultaneous model, the energy of the data term of the right sequence is larger
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Fig. 17. Energy of regularization and data term of motion in simultaneous model in ‘‘Boy’’ images: (a) energy of regularization term of

motion; (b) energy of data term of left and right sequence (l ¼ 10,000); (c) energy of joint term (l ¼ 10,000).
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than that in the left sequence, because the left motion vector is estimated for point ðx; yÞ but the right motion
vector is estimated for point ðxþ d; yÞ. In Fig. 17(c), the energy of the joint data term decreases, showing a
reduction in the perturbations from the joint estimation.
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5. Conclusions

We proposed an energy-based joint correspondence estimation algorithm to be used in stereo image
sequences, and confirmed the performance of the model by applying it to several real stereo image sequences.
The energy-based estimation model consists of a data term and a regularization term, and the weighting factor
l controls the amount of smoothing. At first, we used an anisotropic diffusion operator, which considers both
the magnitude and the direction of an edge to improve edge-preserving performance. Secondly, to increase
efficiency, we estimated the motion and disparity jointly using the relation of the motion and disparity vectors
in the stereo image sequences. Since the model did not require time-consuming initial disparity estimation, the
processing time was reduced. Moreover, since the energy of the initial disparity vector obtained with joint
estimation was lower than that of the initial disparity vector obtained with conventional techniques, we
acquired a higher convergence rate. Finally, in the simultaneous joint estimation model, we proposed the joint
data term to increase reliability and estimated the motion vectors in the left and right sequences
simultaneously. With the joint data term, the error of the vertical disparity vector in the current frame was
reduced, and thus we were able to obtain the y-motion in the right sequence from that in the left sequence.

As a conclusion, the proposed edge-preserving joint motion and disparity estimation showed good edge-
preserving performance and a fast convergence rate. A more correct displacement vector can be obtained by
using an anisotropic diffusion operator, and it is possible to increase efficiency and accuracy by using the joint
estimation model. However, since parameters such as weighting factor, time step size, and the isotropy
fraction were acquired experimentally, they were not robust to the characteristic of an image. Therefore, we
need more research on parameter estimation. In addition, another numerical method is necessary in order to
improve the convergence rate.
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